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Abstract-An analytical investigation is presented of the influence of radiative heat transfer on the complex 
heat exchange problem involving How of an optically active (radiating) gas inside a tube of diffuse 
grey properties. The method used is based on Hottel’s formulation of zone division, and involves the 
transformation-zone approach, where radiation gas emission is replaced with an equivalent surface 
emission. Separable-kernel and surface transformation techniques give a set of non-linear differential 
equations treated by the Runge-Kutta method with Hamming modification. The solutions are governed 
by several independent parameters such as the wall and radiation gas emissivities, inlet and exit gas 
temperatures, length diameter ratio of the tube, uniform and non-uniform heat flux and variableconvective 

heat transfer coefficient at the inner surface. The results apply both to heating and cooling situations. 

INTRODUCTION 

THE THERMAL design and analysis of energy con- 
version systems and devices such as furnaces, com- 
bustion chambers, combustors, fluidized beds, and 
open cycle coal- and natural-gas-fires MHD must 
often take account of the effects of thermal radiation. 
Radiation is also a significant mode of heat transfer 
in many high temperature technological areas such as 
heating and annealing furnaces, thermal control of 
spacecraft, nuclear reactor safety and fire spread. 
In some instances, the radiation will impose an 
additional heat load on a part which is to be kept 
cool, and hence this exchange must be estimated when 
the cooling requirements are computed. In other 
cases, the radiation will cause a region operating at a 
high temperature to have it reduced. 

Heat transfer by forced convection to a gas flowing 
in a tube has received detailed study in the literature, 
but little consideration has been given to the added 
effects caused when thermal radiation (in par- 
ticipating media) is also present. The situation con- 
sidered here is the heat exchange in a circular tube 
with a uniform or non-uniform heat flux supplied 
along the wall, and there is a constant or variable 
convective heat transfer coefficient at the inner 
surface. 

The purpose of this paper is to examine the inter- 
action of radiative and convective transfers for flow 

of a radiation gas in a circular tube. The present paper 
also provides the additional analysis necessary to 
extend refs. [l-3] to include a radiative contribution 
of a radiation gas. The proposed method which 
includes the influence of gas emission is based on the 
zone division approach first formulated by Hottel [4, 
51 and developed by Siegel and Perlmutter [l, 2, 
61. In this, the non-isothermal gas and surface are 

divided into infinitely small isothermal elements. Also, 
it involves the transformation-zone technique. where 
the emission of the gas body is replaced with an equi- 
valent surfdce emission [I, 7-l 01. 

Previously, the analysis presented here has been 
applied to heated tubes only, [8, 91, whereas, in fact, 
it is equally valid for cooled tubes. This is made 
explicit in the final derived equation where the upper 
and lower signs refer to heated and cooled conditions, 
respectively. Also, the analysis is a development of 
that presented by Siegel and Perlmutter [2] and Perl- 
mutter and Siegel [I]. We have deliberately used the 
same notation and derivation to enable the reader to 
appreciate the additional features of this work. 

ANALYSIS 

The system to be analysed is shown schematically 
in Fig. I (the tube system treated here is similar to 

that studied by Siegel and Perlmutter [I, 21). A radi- 
ative gas at a specified inlet temperature T,., flows into 
the tube and is heated to an average exit temperature 
Tg,,. A uniform or non-uniform heat flux q(X) is 

supplied to the tube wall by external means, and the 
outside surface of the tube is assumed to be insulated. 
Each end of the tube is exposed to an outside environ- 
ment or reservoir at specified temperatures, T,,, and 
r,,, at the inlet and exit of the tubes respectively. The 
inside of the tube wall is a diffuse grey surface with 
an emissivity E. The Planck mean volume absorption 
coefficient x is constant and the optical thickness 
K << I. It is assumed that there is no axial conduction 
in the tube wall or in the radiation gas and that the 
convection heat transfer coefficient h(X) is non- 
uniform throughout the tube. 
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NOMENCLATURE 

area of relation of absorptivity and 
apparent emissivity of radiation gas 
apparent absorptivity of radiation gas 
surface 
dimensionless constant of parabolic 
distribution from equation (23) 
constant of parabolic distribution 
specific heat of fluid 
tube diameter 
substitute emissivity factor 

emissive power, emissivity per unit area 
geometric configuration factor for 
radiation from an element on the tube 
wall to the circular opening at the end of 
the tube or the apparent surface of the 
radiation gas body 
dimensionless length-dependent heat- 
transfer coefficient 

H. H,, Hz dimensionless constants from 
equation (22) 

/z(x) convective length-dependent heat- 
transfer coefficient 

h, It,, hz constants in equation (3) 
1 
K 

k 

energy of flowing gas 
geometric configuration factor between 
elements on the inside of the tube wall 
dimensionless radiation gas absorption 
coefficient. x/I 
length of tube 
dimensionless length, L/D 

energy rate, energy per unit time 
heat added per unit area at tube wall 
(length-dependent) 
constant of parabolic distribution, 
energy flux 
total incoming radiation per unit area to 
a surface element 
total outgoing radiation per unit area 
from a surface element 

h4 dimensionless constant of parabolic 
distribution from equation (23) 

m constant of parabolic distribution 
N radiation heat-transfer coefficient 
R dimcnsionlcss radiation heat-transfer 

coefficient 
S(x) length-dependent Stanton number 
S, S,, S2 dimensionless constants from 

equation (14) 
T temperature 
t dimensionless temperature 

%l mean radiation gas velocity 
x axial length coordinate measured from 

tube entrance 
x dimensionless coordinate, X/D 
Y dummy integration variable. 

Greek symbols 
x absorption coefficient 

5 dimensionless variable, Y/D 
6 emissivity of surface 

c,,, d(sp,,) apparent emissivity of radiation 
gas body surface 

E, effective emissivity factor 

P density of radiation gas 
(T Stefan-Boltzmann constant 
t transmissivity. 

Subscripts 
b blackbody 

e exit end of tube 

g gas 
i inlet end of tube (except in symbol q: and 

dtsp.,)) 

P apparent surface of radiation gas body 
r reservoir 

W inside surface of tube wall. 

Energy balance 

The analytical relation between temperatures and 

heat fluxes can be obtained from an energy balance 
for the elementary surface dA, and gas volume dV,. 
According to the net radiation method of Poljak [6], 
and other workers [2, 31 the energy balance for an 
elementary surface dAx a distance X from the tube 
inlet equals 

the heat flowing by convection from the wall to gas. 
(T,, - T,) is the local difference between the wall tem- 
perature and bulk gas temperature. The imposed heat 
flux q(X) and convective heat transfer coefficient h(X) 
are assumed to be dependent on axial position 

q(X) = q+mX+cX’ (2) 

and 

q,*(X) +q(W = q,(X) +W’)]T,(X) - T&01. (1) /z(X) = h+h,X+hZX* (3) 

The terms on the left are, respectively, the total that is, parabolic distributions. 
incoming radiation and the flux due to wall heating. The radiation terms are now considered in detail. 
On the right-hand side, the respective terms are the q,,(X) is composed both of direct emission wTt, 
radiative heat flux leaving the surface element and and reflected radiation which is (I -E) times the total 
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FIG. I. Circular tube geometry. (a) Energy quantities incident upon and leaving infinitesjm~l surface dA, 
and (b) energy quantities for gaseous volume element dV, for heated tube and (c) and (d) for cooled tube, 

respectively. 

incoming radiation [2, 61 

q,(X) = EoT:+(l -e)yfqX). (4) 

The total incoming radiative heat flux q*(X) is com- 
posed of three types of terms, the radiation coming 
from the reservoirs at the ends of the tube, the radi- 
ation from the other elements on the internal tube 
surface, and the radiation arriving from elementary 

gas bodies in the form of cylindrical slices (Fig. 1) [3, 
81. These quantities can be written as 

@fX) = aT;f,z(X)f;(X)+aT,q,?(L-X)~(L-X) 

+ (it,( Y)z(X- Y)KfA’-- Y) d Y 

s 1. 

+ ,~ q,,(w(Y-X)wY--X)dY 

i 

A 

+ es.h d&,.,.)+X- Y)F(X- Y) 
0 

s f. + e,,hd(?+J)?( Y-X)F( Y-x). (5) 
.\ 

In equation (5) the functions F(Z) and K(Z) are the 
typical geometrical configuration factors which occur 

in the system under consideration and z(Z) is the gas 
transmissivity of thickness Z [I, 21. The quantity 
d(E,,,) is the apparent emissivity of the real surface of 
the gas body. This apparent emissivity is given by [3, 

81 

d(c,,) = ISrDdX = 1.5kdX. ta 

By substituting equation (5) into equation (I) and 
equation (4) into equation (1). one obtains two 
relations which include y,,, T, and Tz as a function of 
the dinlensionl~ss independent variable s 13, 8, IO] 

+ q,(Ms- i)M.u-i) di 

i + (/,,fi)z(i-.~)K(i-_s)di 

s I 

+ ~~.hd(i-:p.;)~(iY-_~)f;fi-.~) (7) 
\ 
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1 --c 
y,,(X) = 7 jk(.u)[T,(s)- T&u)]-q(s)) +oT,:(.\-). 

(8) 

In order to solve the set of equations (7) and (8). an 
additional heat balance is written for the flowing radi- 
ation gas. Since the gas is non-transparent to 
radiation, heat is transferred to the wall both by con- 
vection Q,, and radiation Qr. For a cylindrical volume 
clement of length dX and diameter D, the heat trans- 
ferred is [3. 7. 8, 1 I] 

Q,, = II(.O[T,(,~)- ~,(X)]~DdX (9) 

and 

Qr =;~~,~11141:iii-SliiliDd~ 

(10) 

where 

(11) 

E,, is the apparent emissivity of an incremental length 
of grey gas which is infinitely small. This contrasts 
with d(a,,), which is the apparent cmissivity of the 
real gas body surface. given by equation (6). 

Equation (IO) is the same as equation (8: IO) of 
Hottel and Sarofim (pp. 301&302 of ref. [I I]). 
However. that equation holds for a grcy gas sur- 
rounded by a single sourcesink surface. where both 
gas and surface are at uniform tempcraturc. This will 
lead to an error where the tempcraturcs vary, and. in 
fact, we only use the equation on a differential-length 

basis. However, the overall energy balance (Ah[%] in 
Tables l-8) includes the effect of all considerations 
such as the above. and may be regarded as quan- 
titatively satisfactory. 

The quantity (Q,,+Qr) is equal to the net heat 
removed from the volume clement by the flowing radi- 
ation gas which is 

I,-I, =AI= -u,,, 
71DX dT,(W 

m~i ~dX. 4- pc’P d(X) (12) 

The mean fluid velocity LI,,, is assumed constant so that 
kinetic energy changes of the gas are neglected. These 
three quantities are cquatcd and the result is 
rearranged into the form [7, IO] 

q$;’ = [S+S,s+S~.Y~][T~(.Y)-T~(.Y)] 

where 
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Equation (I 3) is the third. necessary relation between 
c/~,, T, and T,. As two of them. T,, and r,. describe 
the physical aspect of the phenomenon, the following 
transformations are carried out according to their 
elimination [ 1. 21. 

Trmnsfi,rmation to (1 clQj&entirrl ryuution 
According to the method presented in refs. [l, 21, 

the integral in equation (8) can bc reduced to a 
differential equation by the use of exponential 

approximations for the geometric kernel K, con- 
figuration factor F and transmissivity T. As shown in 

refs. [l-3], the functions K, F. 7 could be rcpresentcd 
quite well by 

K(s) z e ” (16) 

F(.r) z !e 2X (17) 

5(.x) = c i’. (18) 

By substituting (according to refs. [l-3]) the 
representation given by equations (16))( 18) and by 
double differentiation of equations (7) and (8) 
with respect to s’, and also by single differentiation of 
equation (13). one obtains the following set of non- 
linear, dimensionless differential equations : 

dt, 

dx 
= f4E 

F 4ME.x T 4CE.u’ k 
2c 

c 

+(t,-rf,) 4E(H+H,r+Hz.u’) 
1 

2H2 _ 
Cm+ 

, 
+ (H~H~~~+!q,, +,‘$+.I 

- 1, (H+ H,.Y+ Hz.u’)(S+S,.u+S,.r’) 

+t: 
2(H, + Hxr) 

k(2+/0+- t=l-RA 



-tt 
{ 
W+&.,- i W+H,.Y+H~ 

x (S+S,.r+S$+4Rt,‘)R + yL;= R 

and 
(19) 

dt, 
ds = (S+S,.u+Sz.\-‘)(t,~t,)+R(At,:-TV) (20) 

where 

I 4 
; E_ k(2+k)(l-c)+(2+k)‘s 

48 
_____ (21) 

; H,= 

R=N ‘! 0 
14 WlD CD’ 

: M= 
0 Y 

; C = -; E,,< = 0.15k. 
Y 

(23)f 

(22) 
2 

(2+k)7e 

,lfk), 1 I --I-: 1’) 
‘. c 4 (26) 

The procedure which yields boundary conditions 
(24)-(26) is presented in refs. [l-3]. However, the 
solution procedure involved assuming tW(0) and cal- 
culating the first derivative with respect to .Y at the 
wall. The boundary condition for .Y = I is used for 
verification of the overall calculation which comes to 
an end when the condition is satisfied. 

The terms involving t,,, and t,,, have thus been ehm- 
inated, but they will appear in the boundary con- 
ditions. The two differential equations (19) and (20) 
are solved simultaneously by a numerical procedure. 
but first the boundary conditions have to be specified. 

Boutdur~* c.otzditiotu 

Equation (20) is a first order equation requiring 
only one boundary condition. This condition is that 
at the inlet of the tube the gas temperature has a 
spccificd value t,, 

Orwd hat hu/mwe 

In research practice, despite the formal satisfaction 
of boundary conditions, a numerical solution also 
requires the overall thermal balance of the system to 
be correct [I, 21. According to refs. [l-3, 81, the heat 

t, = t,., at .Y = 0. 
balance takes the dimensionless form 

(24) 

Equation (19) is a second order equation and requires 
two boundary conditions. These are given by the use 
of the approximations for configuration factors and 
trdnsmissivity. 

At s = 0 this gives 

dt, I 

d\- \_,,= [H+4ct:(O)] 

HI 
S+2+k- H [tw(0)-t,,,] 

I 

+HR[At:(O)- t;.,] (25) 

and for .Y = I 

I --E t‘J e (2thll 

i:(2++~j[I +k+C ‘z’h”l+ r” ~2 + I 

= i~[H+H,I+H211][t~(I)-t~(l)l 

tf:,, arises from the identity (from equation (7)) of 
d(E,:)F(B-s) = l.SkdsF(~-x) = 1.5kdr~(<-x)/2 = 0.75,4 
ds K(<--s) = E,,dx K(c-x). 
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x (t, - tJ +tz 1 e”+“” du 

I I 

+M (2+k) ~ (2-+k)’ 

I 
+ (2-e 

,2+h,, 

I’ 

+’ 

21 2 

(2+k) (2+k)’ + (2+k)’ 

x(t -t )+t4 [em”+““ u g \I 
I 

+em”+k”’ “1 &. 

f ; +., ti [e (IthI> te ~t~+hWt)]d_ufcp 

(27) 

where 

I’ 21 4 

- (2/k) + (2+k)’ (2+k)’ 1 I’ 21 4 ~ 
(2+k) + (2+k)I + (2+k)’ 

(28) 
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From the preceding set of non-linear differential equa- 
tions, together with the boundary conditions and the 
overall heat balance. it is necessary first to dctcrmine 
the independent parameters : H ; H, ; H, : S ; S, ; S1 : 

i:: ‘4; k: R: I: t r,,; t,,, and f,,. Then it requires an 
approximation of the value for t,(O) and the cvalu- 
ation of d/,,;d.\- for .\- = 0 from equation (25). This 

calculation enables a further solution of equations 
(19) and (20) to be made, a procedure described in 
detail in refs. [ ll3]. 

NUMERICAL RESULTS 

The set of non-linear diffcrcntial equations (19) and 
(20) was solved by the Rungc-Kutta method with the 
Hamming modification. USC being made of the IBM 
standard library. The calculations wcrc performed 
on an IBM PC computer. In refs. [I, 21 the overall 
problem was treated by various calculations. The 
inside of the tube wall was assumed to be a black or 
diffuse grey surface and the gas flowing through the 
tube was transparent to radiation. The convective 
heat-transfer coefficient between the tube wall and the 
gas was assumed constant --for simplicity the heat 
addition at the tube wall was specified to be uniform. 
The solutions are governed by seven independent par- 
amcters such as the wall emissivity, inlet gas tem- 
pcrature. inlet and exit reservoir temperatures and 
Icngthdiameter ratio of the tube. Numerical cx- 
amplcs are given to show the influence of thcsc par- 
ameters and to demonstrate how radiation alters the 
wall temperature distribution that would exist for con- 
vection alone. In this paper. therefore, we concentrate 
on certain specific results. These illustrate the influ- 
ence of (i) the radiative properties of the radiation 
gas and wall. (ii) the non-uniformity of a heat flux 
imposed at the wall and (iii) the non-uniformity of a 
convection heat-transfer coefhcicnt on the wall, t,, 
and gas, t,. temperature distribution. All the above 
rclatcs to heated tubes. As has been stated, the analysis 
is equally valid for cooled tubes, and results for these 
arc now considered. However. only illustrative cx- 
amples arc given. Also. in Tables IL8 is an expression 
of the accuracy of the method Ah[%]. It has already 
been mentioned that the outlet boundary condition 
given by equation (26) is a termination criterion. For 
this, a precision parameter was defined as being the 
ratio ol’thc difference between the left- and right-hand 
sides of equation (26) divided by the right-hand side. 
For this study. the parameter was set at 0.01%. A 
similar Ah was defined for the overall energy balance. 
equation (27). the values for the various calculation 
runs being in Tables I -8. These values arc partly a 
rcfcction of the paramctcr for equation (26). but 
mainly an expression of the overall accuracy of the 
method. In future work. we intend to study the relative 
effects of the contributing factors to the error in qucs- 
tion. Further, it would be feasible to compare such 
considerations with those in other methods, for 
instance the Monte-Carlo. or heat flux, approaches. 

Numerical calculations have been obtained for a 
heated short tube having a length-diameter ratio of 
5. The values of the parameters were chosen to show 
the behaviour of the system for various combinations 
of the independent parameters. For all of the 
solutions, the inlet and exit rcscrvoir temperatures 
were set equal, rcspcctivcly. to the inlet and exit gas 
temperatures. 

The effect of radiation gas absorptivity (in dimen- 
sionless form) on the wall and in the radiation gas 
temperature distribution is shown in Figs. 2(a) and (b) 
for uniform heat flux and two chosen wall emissivities 
E = I.0 and 0.01. These graphs give new data, then, 
compared with Siegel and Perlmuttcr [2] who assumed 
the gas to be transparent. In Fig. 2(a), curves arc given 
for different values of dimensionless gas absorptivity 
k between 0.0 and 0.5. When the gas absorptivity is 
increased. the radiant heat transfer becomes more 
efficient for I: = 1.0. The tcmperaturc distribution 
along the inner surface of the wall was found to be 
quite insensitive to this range of the k-parameter for 
i: = 0.01. For comparison. the curve for pure con- 
vection and uniform hcut flux is included. The radi- 
ation loss to the reservoirs causes the wall temperature 
to drop near the ends of the tube. As expected, when 
8 decreases and k increases, a greater portion of the 
heat is transferred to the radiation gas. This is also 
shown in Fig. 2(b) where the radiation gas tcm- 
pcrature variation approaches that of pure convection 
as k becomes large and is above the pure convection 
line (fork = 0.2-0.5) if8 = 0.01, Tables I and 2 shows 
the set of dimensionless numbers and physical quan- 
titics which were used in the calculation. The initial 
and final wall and radiation gas temperatures. both 
calculated numerically. arc also presented there. In 
Fig. 2(c). the solutions in Fig. 2(a) are plotted in terms 
of the radiation correction factor H,‘H,,,,, which was 
discussed in refs. [I. 21. The present analysis has pre- 
dicted the f,, and t, which would be measured, and a 
local experimental heat-transfer coefficient can then 
be defined as [IL31 

I?,,,, = rl 
T,, - T, 

or H_,, = -! 
t, - t, 

(29) 

The Hcrp will result from the combined cffccts of both 
radiation and convection. The dimensionless heat- 
transfer coefficient for convection alone is simply H 

so that we can form the ratio 

H/H,,, = HCt,- t& (30) 

The ratio is really a correction factor, and if it is used 
as a multiplier on the c.uprrinzenta/ results, it will 
correct for the radiation effect on H,,,,. The result will 
be the heat-transfer coefficient for convection alone. 
For I= 5, there arc large radiation losses so that 
the measured heat-transfer coefficient would be much 
higher than the convection coefficient. In this case the 
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FIG. 2. (a) Effect of dimensionless absorptivity k on temperature distribution in the tube wall. y(x) = const ; 
E = I.0 and 0.01. (b) Effect of dimensionless absorptivity k on temperature distribution in the gas. 
y(x) = const ; c = I .O and 0.01. (c) Effect of dimensionless absorptivity k and wall emissivity E on the ratio 

of heat transfer for pure convection to that for combined convection and radiation. q(x) = const. 

Table 1. Effect on predictions of varying dimensionless absorptivity k, for E = 1.0 (heated tube) 

z = 1.0 I = 5 H = 0.8 S = 0.01 I,,, = t,, = I.5 A = 0.85 

k 0.0 0.1 0.2 0.3 0.4 0.5 
R 0.0 3.12 x lOmJ 6.25 x 10mJ 9.373 x 1om4 2.25 x IO-” I.563 x IO-’ 
8,’ 0.0 0.025 0.05 0.075 0.10 0.125 
i:p.. 0.0 0.075 0.15 0.225 0.30 0.375 
E I.0 1.1025 I.21 1.3225 1.44 I .5625 
L(O) = I,., I .7399 I .7065 I .6894 1.6791 I .6722 I .6674 
L,< = L(l) I .7525 I .7237 I.7105 1.7039 I .7006 I .6992 
I,,, = t,., 1.5216 I .5266 I .5306 1.5344 I .5380 1.5416 
Ah [%] 0.00 0.041 0.066 0.10 0.30 0.52 

Table 2. Effect on predictions of varying dimensionless absorptivity k, for E = 0.01 (heated tube) 

I: = 0.01 I = 5 H = 0.8 S = 0.01 l,,, = l,,, = I.5 A = 0.85 

k 0.0 0.1 0.2 0.3 0.4 0.5 
R 0.0 1.0x IO 4 I .4 x IO_” 1.5x 1om4 I .58 x 10 m4 I .62 x IO-’ 
E:p 0.0 0.025 0.05 0.075 0.10 0.125 
Ep.5 0.0 0.075 0.15 0.225 0.30 0.375 
E I .o 6.30 12.10 18.40 25.20 32.5 
L(0) = L 2.4093 2.4085 2.4082 2.4080 2.4079 2.4079 
I,, = r,(l) 2.4401 2.4478 2.4510 2.4518 2.4525 2.4529 
I,., = 1, c I .5459 1.5581 1.5629 1.5641 I.5651 1.5656 
Ah [%] 0.0 0.57 0.85 0.97 I .09 1.18 
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0 1 2 3 4 5 

x 

Fm. 3. The heat Il!~x L/(.Y)II~ distributions along the tube wall. 

set of correction factors is much less than unity. In 
the central region of the short tube for I: = 1.0 (Fig. 
2(c)) about 25% of the heat input is transferred by 
convection (c) and 75% by radiation (a) and (b) where 
15% is the effect of the energy transfer from the radi- 
ation gas (b). However. for I= 5 and c = 0.01, radi- 
ation accounts for only 25% of the energy transfer and 
heat exchange from the radiation gas can be neglected. 
Even for an emissivity as low as 0.01, the correction 
factor is quite large and the effect of radiation cannot 
be ignored in comparison with the convection effects 

[2, 31. 

Figure 3 illustrates the heat flux distributions along 

the tube wall. Numerical calculations show the correct 
and significant influence of dimensionless heat flux 
distribution on the temperature distribution t, and 
t,. It is also demonstrated that there is substantial 
influence of heat flux distribution for a low value of 
wall cmissivity. 

The results for different values of heat flux dis- 

tribution q(.r)/q are shown in Figs. 4(a) and (b) for 
emissivities I: = I and 0.01 and dimensionless radi- 
ation gas absorptivity k = 0.1 (data from Table 3). 
The run numbers l-4 are defined with reference to a 
comprehensive set of heat flux distributions accom- 
modated within equation (2) and given by 

I. q(.u),!q = I 

2. c/,(.u)k~/ = I + 0.2.~ - 0.04.~’ 

3. q(x)/q = I -0.2.r+O.O4.u’ 

2.8 

2.6 

2.4 

2.2 

_* 

2.0 

1.9 

1.8 

1.7 

(a) 

E = 1.0 

4 
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3 

e, 

0 I 2 3 4 5 

(b) 
x 

1.58 
t 

k = 0.1 
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urn 1.54 - 

0 1 2 3 4 5 

x 

FICG. 4. (a) Erect of dimensionless (non-uniform) heat fluxes 
q(s)/q on the tube wall temperature distribution. k = 0.1 ; 
c = 1 .O and 0.01. (b) EiYect of dimensionless (non-uniform) 
heat flux C/(.X)/~ on the gas temperature distribution. k = 0. I ; 

(31) i: = I .U and U.UI 4. q(s)/q = I +0.2s. 

Table 3. Eff‘ect on predictions of varying dimensionless heat flux, for E = I .O and 0.01 (heated tube) 

I = 5 H = 0.8 .S = 0.01 f,,, = t,, = 1.5 A = 0.85 k = 0.1 c,, = 0.025 tip\ = 0.075 

t: = I.0 E= I.1025 R = 3.12x 10m4 I; = 0.01 E= 6.30 R = 1.0~ IO ' 
I 2 3 4 I 2 3 4 

1% (0) = ~,.I I .7065 I .7239 I .68X9 I .7390 2.4085 2.4 IO2 2.4070 2.4121 
1% L1 = ~\\(O I .7237 1.7431 I .7038 I .8484 2.4478 2.4556 2.4401 3.0750 
I, ,c = 1S.C I .5266 I .5305 I .5225 I .5372 1.5581 I .5673 I .5487 I .5854 
Ah [%I 0.141 0.26 0.036 0.314 0.57 0.635 0.517 0.82 
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FIG. 5. Stanton number S(r) distributions along the inner 
surface of the wall. 

In a similar manner to heat flux, a set of alternative 

distributions for h(.u), accommodated by equation 
(3), result in the following run definitions for the 
dimensionless convective parameters S(.u) and H(.u) : 

1. S(x) = s = 0.01 H(.u) = H = 0.8 

7. S(s) = 0.01-0.00~5.~+0.0005.~~ 

N(s) = 0.8-ox\-+0.04.x’ 

3. S(.r) = O.Ol-0.0058.~+0.0008r’* 

H(s) = 0.8-0.464.~+0.064.\-’ 

2a. S(X) = 0.01+0.0035.P-0.0005.~’ 

N(.u) = 0.8+0.28.Y-0.04,Y~ 

3a. S(s) = 0.01+0.0058.~+0.0008.~~ 

H(X) = 0.8+0.464.u-0.064.X’. (32) 

Figure 5 illustrates the Stanton number S(X) dis- 
tributions along the inner surface of the wall. In Figs. 
6 and 7 the results for different values of Stanton 
number S(.v) and of H(.u) are plotted for emissivities 
of 1 and 0.1 and dimensionless absorptivity k = 0.0 

and 0.1. For the same uniform external heat fIux, an 

increase in the Stanton number (examples 3 + 3a) 
tends to decrease the axial temperature distribution 
along the tube and increase the axial gas temperature 
gradient (Figs. 6(c) and 7(c)). The present results 
show that this parameter dots not have a significant 
effect for c = I .O but becomes quite large for an emiss- 
ivity of 0. I. Also, it has a more conspicuous effect near 
the outlet reservoir. Tables 4 and 5 show the set of 
dimensionless numbers and physical quantities which 
were used in this calculation. 

In refs. [l-3, 8, IO], and the previous section, the 

overall problem treated by various calculations and 

analyses for a flow system with transparent and radi- 

ation gas refers only to heated tubes. In this section 

of our paper, we extend the consideration to certain 

specific results for cooled tubes. These illustrate the 
influence of (i) the inlet and exit reservoir tempera- 
tures, (ii) the non-uniformity of a (negative) heat flux, 
(iii) the radiative properties of the radiation gas and 
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Cc) I 
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1.52 

1.51 

/ 

I I I I I I 
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FIG 6. (a) Effect of Iength-depetldent Stanton number S(s) 
on the telnperature distributions in the tube wall. k = 0.0; 
E = I.0 (transparent gas). (b) Effect of length-depe~ldent 
Stanton number S(s) on the temperature distributions in the 
tube wall. k = 0.1 ; I: = 1.0 (radiation gas). (c) Effect of 
length-dependent Stanton number S(x) on the temperature 

distributions in the gas. k = 0.0 and 0. I ; E = 1 .O. 
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FIG. 7. (a) Elect of length-dependent Stanton number S(.y) on the temperature distributions in the tube 
wall. k = 0.0; E = 0.1 (transparent gas). (b) Erect of length-dependent Stanton number S(s) on the 
temperature distributions in the tube wall. k = 0. I ; i: = 0. I (radiation gas). (c) Effect of length-dependent 

Stanton number S(s) on the temperature distributions in the gas. k = 0.0 and 0. I ; i: = 0. I. 

Table 4. Effect on predictions of length-dependent Stanton number, for k = 0.0 and 0. I (E = I .O) (heated 
tube) 

I = 5 H = 0.X S = 0.01 t,,, = I,, = I.5 A = 0.85 

i: = 1.0 h = 0.0 E = I.0 i: = I.0 h- = 0.1 E= 1.1025 
i: ,,=o.o R=O.O s,=o.o i:p 1 = 0.075 R = 3.12 x IO a x,, = 0.025 

2 3 2a 3a 2 3 2a 3a 

l*(O) = I, I I .7660 I .7890 I .7202 I .7OY5 I.7192 I .7295 I.6961 I .6YOl 
I,, c = LCO I.7917 I .8276 I .7236 I .7075 I .7462 I .7662 I .7059 I .6Y54 
1, .C = ‘,.C I.5132 1.5051 I .5274 I .5305 1.5207 I.5155 I.5310 I .5336 
Ah [%I 0.01 0.113 0.05 0.074 0.2 I 0.284 0.09 0.058 

Table 5. Etkct on predictions of length-dependent Stanton number, for k = 0.0 and 0. I (I: = I .O) (heated 
tube) 

I= 5 H = 0.X S = 0.01 t,,, = I,,, = 1.5 A = 0.85 

t; = 0. I k = 0.0 E = I.0 1: = 0.1 k = 0.1 E= 1.575 
>:P.\ = 0.0 R = 0.0 c,, = 0.0 ‘a +., = 0.075 R = 3.12 x IO- E,, = 0.025 

2 3 2a 3a 2 3 2a 3a 

f, (0) = r,\., I .9638 I .Y775 I .Y305 1 .Y225 1.9378 I .Y433 I.9217 I.9169 
L, = f,(L) 2.0516 2.1361 I .896Y I.8618 2.022 I 2.0886 I .8Y73 1.8654 
(LX = f,C I.5177 I .506Y 1.5331 I .5358 1.5314 I .5249 I.541 I I .5430 
Ah [?‘“I 0.348 0.51 0.248 0.335 0.382 0.41 0.137 0.095 
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Table 6. Input data and predicted exit temperatures for runs l-3 (cooled tube) 

I= 5 H = 8 S = 0.01 E = 1.0 k = 0.0 
t,,, = 2.0 E = I.0 A4 = 0.0 c = 0.0 

Run L(0) = l,., Ab [“/u] 
I I .8369 t,,, = = 2.0 t,,, t,,, = t,,, = 0.776 I~,, = 1.9606 0.0 
2 I .8388 I,,, = = 2.0 t,,, t,,, = I .40 t,,, = I .9665 0.0 

t, e = 1.2535 
3 I .6346 t,, = 1.8 t,, = t,* c = 0.736 t,,, = I .9539 0.0 

t,, = 2.0 

(iv) the influence of tube length on the wall and gas 
temperature distribution. Tables 6-8 show the set of 
dimensionless numbers and physical quantities which 
are used in the calculation. The initial and final wall 

and radiation gas temperatures, all calculated numeri- 
cally, are also presented there. Also, in Tables 68 is 
an expression of the accuracy of the method Ab[%]. 

i5fltict of’ inlet und erit reservoir toryxwtures 

Figure 8 shows the effect of varying the inlet and 
exit reservoir temperature in a duct of length .Y = 5. 
Solutions were obtained for a transparent gas and 
uniform (negative) heat flux. For a tixed inlet gas 
temperature t,,, = 2.0 the inlet reservoir temperature 
r,,, was set equal to t,,, (for runs 1 and 2) while for run 
3 it was assumed to be I .8. Also. for runs 1 and 3 the 
exit reservoir temperatures were set equal to the exit 
wall temperature (t,., = t,,,). For run 2 it was assumed 
that the exit reservoir temperature t,,, = 1.40 was a 
parameter independent of the exit gas and wall tem- 

Table 7. Input data and predicted exit temperatures for runs 
47 (cooled tube) 

I = 5 H = 0.8 S= 0.01 i: = I.0 
A = I.18 I,,, = I,,, = 2.0 

k = 0.0 R = 0.0 k = 0.1 R = 3.125 x 10m4 
E = I .O i:,,\ = 0.0 E = I. 1025 c,,\ = 0.075 

Run 4 
M 0.0 0.0’ 

6 7 
0.20 PO.20 

c 0.0 0.0 -0.04 0.04 
L(0) = t,, I .8499 I .9201 I.9111 I .9293 
1, c = I, (0 I .8284 I .9080 I .8935 I .9222 

t,., = 1,s I .9794 1.9879 1.9837 1.9919 
Ah [o/o] 0.0 1.78 I .93 1.64 

Table 8. Input data and predicted exit temperatures for runs 
8 I I (cooled tube) 

H = 0.8 S= 0.01 c = I.0 A = 1.18 
E=l.21 /,,=t,.,= 1.5 k=0.2 

i:p., = 0.15 R = 6.25x IO-’ 

Run 8 9 10 II 
I=5 /=8 I= IO I= 16 

L(0) = f,., 1.3284 I .3275 1.3275 I .3275 
r,., = t, (0 I .2936 I .2593 I .2359 I.1621 
I,., = t,, I .4727 I .449l I .4328 1.3820 
Ah [X] I .65 2.62 3.25 5.11 

peratures. As shown in Fig. 8 the initial portion of the 
wall-temperature curve is nearly independent of the 
exit reservoir temperature because the exit reservoir is 
too far away to influence the region near the tube inlet 

]I, 4. 

Figure 9 shows the wall and gas temperature dis- 
tributions for short tubes with various (negative) heat 
fluxes and for k = 0.0 and 0.1. When the absorptivity 
of the radiation gas is increased, the radiation-heat 
transfer becomes more efficient and hence the wall 

1.9 r E= 1.0 k=O 
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Pure convection / 
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.z 

FIG. 8. Effect of inlet and exit reservoir temperature on the 
temperature distributions in the tube wall and gas. c = I .O: 

k = 0.0 (transparent gas). 
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x 

FIG. 9. Effect of dimensionless (non-uniform) heat fluxes 
on the temperature distributions in the tube wall and gas. 

c = 1 .O : X = 0.0 and 0. I, 

temperature distributions incrcasc. Because of the 
large radiation being transferred to the wall, the 
curves of radiation gas temperature fall far below the 

gas teinperature for a lranspar~n~ gas. 

The influence of dimensionless tube length I for a 
wall emissivity E = I .O and dimensionless gas absorp- 

tivity k = 0.2 on wall tube and radiation gas tem- 

pcraturc distributions is shown in Fig. IO. Howcvcr, 
as 1 increases beyond about 16 diameters convergence 
becomes problematical due to the highly non-linear 

form of the equations. This displays itself in pseudo- 
solutions which are quite inconsistent with the down- 
stream thermal boundary conditions used as a check 
during iteration. In fact, the above length itsell 
appears to be dependent on temperature and dimen- 
sionless gas absorptivity k, and we have quoted the 
value relevant to Fig. IO. 

CONCLUSIONS AND FUTURE WORK 

In this paper we have presented a coinprehensive 
treatment of the problem of combined radiation and 

..* 
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0.7 1 I I I I I 

0 0.2 0.4 0.6 0.8 1.0 

XlL 

FE IO. Effect of tube length on the lube wall and gas 
tcmpernture distributions. y(.x) = const ; J: = I .O: k = 0.2. 

convection for fluid flowing in a tube. In three impor- 
tant regards we have extended the analysis of Siegel 
and Perhnutter [I, 21. However, we have retained 
both the general features of their approach, and for 
convenience of comparison, their notation. 

Our analysis now includes (a) the cffcct of non- 
trans~drenoy of the gas, parameter li, fb) length- 
depcndcnt heat fluxes. up to a parabolic distribution 
and fc) the application to cooled tubes. 

Other features arc an overall energy balance check 
(rarely above 1% error). and a flcxiblc accom- 
modation of convection. The latter means that either 
a dimensionless-group type expression, or even a CFD 

(computational fluid dynamics) approach could be 
used for the local convective heat transfer. 

For the future. we also intend to study the effects of 

the various contributing factors to the overall energy 
balance, and to compare these with corresponding 
considerations in the other methods such as Montc- 
Carlo or heat flux. The convergence problem should 
also bc investigated further. 

REFERENCES 

1. M. Pcrlmutter and R. Siegel, Heat transfer by combined 
forced and thermal radiation in a heated tube, J. Hwr 
Trwzs/& 84, 30 I 3 I I ( 1962). 

2. R. Siegel and M. Perlmutter, Convective and radiant 
heat transfer for flow of transparent gas in a tube with 
a gray wall, I/U. J. tfmt Moxs Trm.v/iv 5,639-660 (1962). 

3. J. Stasick, Application of the gcneraliscd configuration 
factors and the principle of surf& tr~llsform~~tion to 
radiant heat exchange in system with optically active 



Radiant and convective heat transfer 3645 

medium, Z.N.P.G. Mechanika 49, I-116 (1985) (in 
Polish). 

4. H. C. Hottel and E. S. Cohen, Radiant heat exchange in 
gas-filled enclosure : allowance for nonuniformity of gas 
temperature, A.I.Ch.E. J/4, 3-14 (1958). 

5. H. C. Hottel and A. F. Sarofim. The effect of gas flow 
patterns on radiative transfer in cylindrical furnaces, J. 
Heat Trutw/i~r 8, I 153-l 169 (1965). 

6. R. Siegel and J. R. Howell, Thrrmtrl R&i&ion Hen/ 
Trrm.~/~~. McGraw-Hill. New York (1972, 1981). 

7. M. W. Collins and J. Stasiek, Numerical modelling of 
radiative and convective heat transfer for flows of a non- 
transparent gas in a tube with grey wall. Adr. Com- 
/~ircirioitul Mctl,s i/l Hcui Trcm.sfrr, Vol. I. Proc. 1st 
Inr. Cor$, Portsmouth, U.K., pp. 14lLl56, 17-20 July 
(1990). 

8. J. Stasiek, Transformational-zone method ofcalculation 
of complex heat exchange of optically active medium 
inside tube of diffuse grey surface, Wiirnte- rrnd S/off& 
hertrt/,yu,rq 22, I2991 39 ( 1988). 

9. J. Stasiek, J. Mikielcwic7 and A. Jedruch. Heat transfer 

during flow of optically active medium inside tube of 
diffuse grey surface, Proc. Ist World Conf: E.xp. Heat 
Trunsjiir. Fluid Mech. Thermodynamics, Dubrovnik, 
Yugoslavia pp. 397404,49 September (1988). 

IO. J. Stasiek and M. W. Collins, Radiant and convective 
heat transfer for flow of an optically active gas in a 
cooled tube with a grey wall, Proc. 9th Ini. Heat Trtmsfer 
Conf:, Jerusalem, Israel, Vol. 6, pp. 409-414, 19-24 
August (1990). 

I I. H. C. Hottel and A. F. Sarolim, Radio/& Trunsftir. 
McGraw-Hill, New York (1967). 

12. M. N. &isik. Radio/ire Trtmsfir ami Interaction.\ with 
Conduction und Conwction. Wiley, New York (I 973). 

13. M. Perlmutter and J. R. Howell, Radiant transfer 
through a gray gas between concentric cylinders using 
Monte-Carlo, J. Hcut Trumfer 86, 169%179 (1964). 

14. C. M. Usiskin and R. Siegel, Thermal radiation from a 
cylindrical enclosure with specified wall heat flux. J. Hea/ 
Trrrrz.yf>r 82, 369-374 (I 960). 

15. IBM Application Program, Tech. Pub]. Dept., New 
York (1970). 


